Technology Solutions

HMIC PIN Diode Variable Attenuator 0.8 - 1.0 GHz

Features

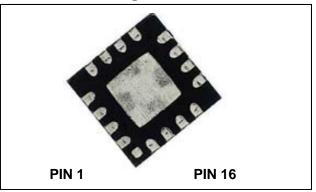
- Bandwidth: 0.80 GHz to 1.00 GHz
- <1.0 dB Insertion Loss, Typical
- 1.4:1 VSWR, Typical
- 24 dB Attenuation, Typical
- 40 dBm IIP3, Typical (1MHz Offset, @ +0dBm Pinc)
- 0-1.8 Volt Control Voltage.
- User can add an External Resistor for higher voltage requirements.
- RoHs Compliant

Extra Features

- Usable Bandwidth: 0.60 GHz to 2.00 GHz
- 1.9 dB Insertion Loss, Max
- 2:1 VSWR, Max
- 20 dB Attenuation, Max

Description and Applications

M/A-COM's MA4VAT900-1277T is a HMIC MONLITHIC PIN Diode Variable Attenuator which utilizes an integrated 90 degree 3dB hybrid with a pair of Silicon PIN Diodes to perform the required attenuation function as Voltage (Current) is applied.


This device operates from 0 to 2 Volts at 330 uA typical control current for maximum attenuation. The user can add external biasing resistors to the bias ports for higher voltage requirements as required.

M/A-COM's MA4VAT900-1277T PIN Diode Variable Attenuator is designed for AGC Circuit Applications requiring:

- Lower Insertion Loss
- Lower distortion through attenuation
- Larger dynamic range for wide spread spectrum applications

Rev. V3

MLP 3mm Package—Circuit Side View

PIN Configuration¹

PIN	Function	PIN	Function		
1	GND	9	DC2		
2	GND	10	GND		
3	GND	11	GND		
4	GND	12	DC1		
5	GND	13	GND		
6	RF2	14	GND		
7	GND	15	RF1		
8	GND	16	GND		
Contor Paddle is PE and D.C. Ground					

Center Paddle is RF and D.C. Ground

1. RF Input & RF Output Ports are Functionally Symmetrical

Absolute Maximum Ratings @ +25 °C ^{2,3}

Parameter	Maximum Ratings		
Operating Temperature	-40 °C to +85 °C		
Storage Temperature	-65 °C to +150 °C		
Junction Temperature	+175 °C		
RF C.W. Incident Power	+33 dBm C.W.		
Reversed Current @ -30 V	50nA		
Control Current	5 mA per Diode		

2. All the above values are at +25 °C, unless otherwise noted.

3. Exceeding these limits may cause permanent damage.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions • North America Tel: 800.366.2266 / Fax: 978.366.2266

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY**: Data Sheets contain information regarding a product WA-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

is considering for development. Performance is based on target specifications, simulated results,

Visit www.macomtech.com for additional data sheets and product information.

 $\it M/A-COM$ Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

HMIC PIN Diode Variable Attenuator 0.8 - 1.0 GHz

Electrical Specifications @ +25 °C

Parameter	Frequency Band	Unit	Min	Тур	Мах
No DC Bias RF Parameter					
Insertion Loss	0.80 GHz—1.00 GHz	dB	-	1.0	1.2
Input Return Loss		dB	11	14	-
Output Return Loss		dB	11	14	-
P1dB		dBm	30	33	-
IIP3		dBm	37	40	-
Control Voltage		V	-	0 V @ 0uA	-
DC Bias RF Parameter					
Maximum Attenuation	0.80 GHz—1.00 GHz	dB	21	24	-
Input Return Loss @ Max Attenuation		dB	17	20	-
Output Return Loss @ Max Attenuation		dB	17	20	-
Input IP3		dBm	15	18	-
Control Voltage @ Max Attenuation		V	-	1.80 V @ 330 uA	-

Typical RF Performance Over Industry Designated RF Frequency Bands ^{4,5}

Band		Freq	I. Loss	Att.	R. Loss	IIP3	Phase -Relative-
		(MHz)	(dB)	(dB)	(dB)	(dBm)	(Degree)
AMPS	RX	824-849	0.9	24	13	40	15°
AMES	тх	869-894	0.9	24	13	40	
GSM	RX	880-915	1.1	21	11	40	15°
	тх	925-960	1.1	21	11	40	

4. All are typical values only.

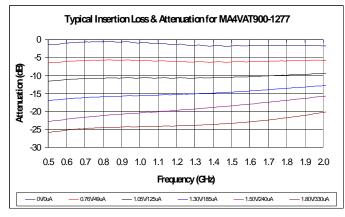
5. Relative phase is the measured Insertion Phase difference between Insertion Loss and 15 dB Attenuation. (Please refer to the plots below)

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

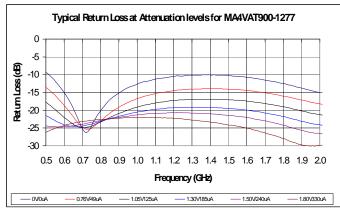
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

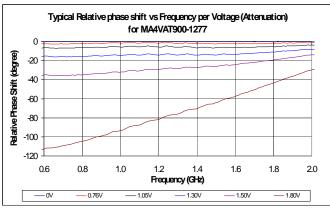
Rev. V3

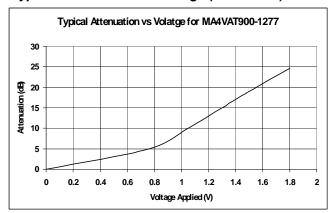


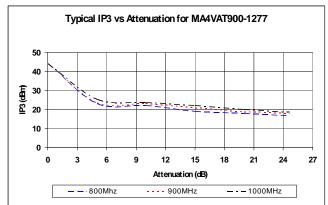
Rev. V3


HMIC PIN Diode Variable Attenuator 0.8 - 1.0 GHz

Plots of Typical RF Characteristics @ +25 °C


Typical Insertion Loss & Attenuation


Typical Return Loss @ All Attenuation Levels


Typical Relative Phase Shift Per Attenuation (Voltage)

Typical Attenuation vs Voltage (@900 MHz)

Typical IIP3 vs Attenuation

For Reference ONLY:

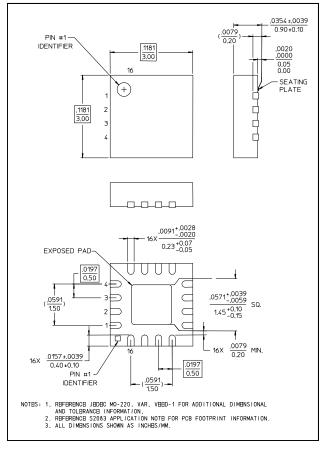
With 0 Ω External Bias Resistor, the following are Approximate Values:

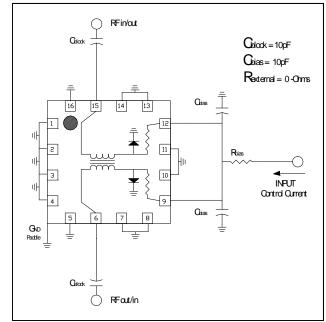
- Insertion Loss = 0 V @ 0 uA
- 5dB Attenuation = 0.76 V @ 49 uA
- 10dB Attenuation = 1.05 V @ 125uA
- 15dB Attenuation = 1.30 V @ 185 uA
- 20dB Anttenuation = 1.50 V @ 240 uA
- Max Attenuation = 1.8 V @ 330 uA

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.


³



HMIC PIN Diode Variable Attenuator 0.8 - 1.0 GHz

Rev. V3

Package PIN Designation, External Components, and Equivalent Circuit

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

4

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.